ALZHEIMER'S DISEASE: INITIAL REPORT OF THE PURIFICATION AND CHARACTERIZATION OF A NOVEL CEREBROVASCULAR AMYLOID PROTEIN

George G. GLENNER, M.D. and Caine W. WONG

University of California, San Diego (M-012), La Jolla, CA 92093

Received April 2, 1984

SUMMARY: A purified protein derived from the twisted β-pleated sheet fibrils in cerebrovascular amyloidosis associated with Alzheimer's disease has been isolated by Sephadex G-100 column chromatography with 5 M guanidine-HCl in 1 N acetic acid and by high performance liquid chromatography. Amino acid sequence analysis and a computer search reveals this protein to have no homology with any protein sequenced thus far. This protein may be derived from a unique serum precursor which may provide a diagnostic test for Alzheimer's disease and a means to understand its pathogenesis.

Alzheimer's disease is the most frequent cause of dementia in the United States and the fourth most common cause of death, affecting over 2 million individuals. There is no definitive diagnostic test or therapy for this disease, no experimental animal model exists and its pathogenesis is unknown (1). It is characterized pathologically by three intracerebral sites of twisted β-pleated sheet (amyloid) fibrils (2): the intraneuronal neurofibrillary tangles, the extracellular amyloid-containing neuritic plaques and the cerebrovascular amyloid fibril deposits (3). Previous extensive studies have shown that vascular deposits of amyloid fibrils are derived from an abnormal serum protein which is processed by the lysosomal complement of endothelial cells to produce β-pleated sheet (amyloid) fibrils (4). These may differ in specific clinical conditions, e.g. an immunoglobulin light polypeptide chain (5), an acute phase serum protein designated SAA (6), a prealbumin variant (7), a human gamma trace protein (8). The first amino acid sequence analysis of an amyloid fibril protein was reported in this journal in 1970 (9) and since then a variety of others corresponding to different clinical conditions have been defined by sequence analysis (4).

Since cerebrovascular amyloidosis is seen only in Alzheimer's disease, adult Down's syndrome individuals (10) and a familial Icelandic cerebrovascular amy-
loidosis syndrome (8), it seemed likely that isolation and identification of the
cerebrovascular amyloid fibril protein in Alzheimer's disease would make
possible the identification of a unique amyloid fibril precursor protein in the
serum of these patients. This in turn would lead to a specific diagnostic serum
test for Alzheimer's disease.

MATERIALS AND METHODS

Amyloid Fibril Concentration: Human brains obtained at autopsy were frozen at
-70°C. Histological sections were taken, stained for amyloid and only those
with extensive cerebrovascular amyloidoses were selected for amyloid fibril
isolation. Age matched normal brains were used for controls. The meninges
were stripped, and gross cortex contaminants removed. The tissue was homogen-
ized in 0.09% sodium chloride-0.1% sodium azide and the homogenate centrifuged
in a Sorvall RC-5B (DuPont Instruments) at 12,500 x g for 60 min. at 4°C. The
supernatant was discarded. The resultant pellet was made up of two visually
distinct layers. The thin brownish top layer was enriched in amyloid protein
as monitored by polarization microscopy after Congo red staining. The layers
were separated by dissection of the frozen pellet. A second homogenization of
the lower layer yielded a significant second crop of amyloid protein. The
amyloid enriched top layer was homogenized in 0.05 M TRIS-HCl, 3 mM NaCl, 0.01
mM CaCl2, pH 7.5 buffer to make an approximate 4% solution (w/v). Solid colla-
genase (EC 3.4.24.3, Sigma Chemical type I) was added in a 1:100 ratio (weight
enzyme: weight pellet) and the resultant mixture was incubated in a Dubnoff
shaker at 37°C for 8 hrs. The digestion by collagenase was monitored by Congo
red staining with polarization microscopy and by x-ray crystallography (2).
After the digestion was completed, the mixture was centrifuged in a Beckman
L5-50B ultracentrifuge at 105,000 x g for 60 min. at 4°C. The supernatant was
discarded and the pellet frozen at -20°C.

Protein Extraction: The collagenase-treated pellet was solubilized in 6 M
guanidine-HCl, 0.1 M TRIS-HCl, 25 mM dithiotheitol, 0.34 mM EDTA, pH 8.0
(22% w/v) and stirred at room temperature for 48 hrs. After 48 hrs. the
solution was centrifuged in a Beckman L5-50B ultracentrifuge at 105,000 x g
for 60 min. at 4°C. The pellet was separated from the supernatant. The super-
natant was placed into 1000 molecular wt. cut off dialysis tubing (Spectra/Por
6, Fisher Scientific) and dialyzed, lyophilized and the resulting powder stored
dessicated at -70°C.

SDS-Urea Polyacrylamide Gel Electrophoresis (SDS-urea PAGE): SDS-urea PAGE was
done by the Laemmli system (11) modified only by the addition of 8 M urea in
the stacking and resolving gel. Slab gels (15%) were made 0.75 mm thick and
run at 10 mA constant current. After electrophoresis, gels were stained with
Coomassie Brilliant Blue R.

G-100 Sephadex Column Chromatography: The procedure was identical to that
employed previously (12) using a 2.5 x 100 cm G-100 calibrated Sephadex column
(Pharmacia) equilibrated with 5 M guanidine-HCl, 1.0 M acetic acid with 40 mg
of protein applied. The column was calibrated with cytochrome C (horse heart),
12,384 M r and glucagon, 3,485 M r . The protein elution profile was monitored at
280 nm with a Beckman 35 spectrophotometer. The protein peak centered at
4,200 M r was pooled and dialyzed exhaustively against deionized water, lyo-
philized and stored dessicated at -70°C.

High Performance Liquid Chromatography (HPLC): One hundred μg of the lyophilized
protein from peak fractions of the Sephadex column was solubilized into 50 μl
of 88% formic acid. This was injected into a Waters HPLC system. The mobile
phase was: solvent A: 0.1% trifluoroacetic acid/H2O, solvent B: 100% acetoni-
trile. The gradient was linear from 10% to 50% solvent B over 60 min. Flow rate was 0.8 ml/min, and the protein peaks were detected at 229 nm with 2.0 AUFS. The stationary phase used was a Vydac 214TP54 C4 peptide column. Two major protein peaks were found (Fig. 1). One at 35% solvent B and the other at 36% solvent B. These protein peaks were pooled separately, lyophilized and stored at -70°C. For samples that were prepared for amino acid analysis, 10 μl of 20% sodium dodecyl sulfate was added before lyophilization.

Amino Acid Analysis: Samples to be analyzed for amino acid composition were hydrolyzed with 6 M HCl in vacuo at 110°C for 24 hrs. After 24 hrs, the samples were dried in a vacuum chamber with a NaOH trap. The dried samples were solubilized in pH 2.2 citrate buffer and injected into a Beckman 118C Automatic Amino Acid Analyzer for analysis. Norleucine was used for the internal standard.

Amino Acid Sequencing: Samples were dissolved in heptfluorobutyric acid and loaded in a Beckman 890C spinning cup sequencer. The collected anilothiazolone amino acids were converted to phenylthiohydantoin amino acids (PTH-amino acids) with 1 N HCl/MeOH at 50°C for 10 minutes. The PTH-amino acids were dried and redissolved in MeOH. The PTH-amino acids were analyzed on a Beckman 322 HPLC system fitted with a ETH-Permaphase guard column and a IBM 6 μ CN column in line. The eluent was monitored at 254 nm.

RESULTS AND DISCUSSION

By polarization microscopy after staining with Congo red the presence of amyloid fibers can readily be demonstrated by their green polarization color in the isolated meningeal vessels of Alzheimer's disease patients. With this property as our marker we have designed a protocol that affords isolation of a fraction that is highly enriched in amyloid fibers. It appears that collagen is the major contaminant in the crude homogenates. Initial experiments with collagenase showed that the amyloid fibers are resistant to this protease. After collagenase digestion of the crude homogenates with subsequent washes of the insoluble sediments with buffer, our preparations visually appear to be almost homogeneous by polarization microscopy and maintain the ß-pleated sheet configuration as determined by x-ray crystallography (2). This material is then denatured in 6 M guanidine-HCl, 0.1 M TRIS, 25 mM dithiothreitol, 0.34 mM EDTA pH 8.0. Denaturation of the amyloid fibers is monitored by the loss of the green polarization color. The undissolved materials are removed by centrifugation and the supernatant dialyzed and lyophilized. Six Alzheimer's disease cases and three age matched control cases were examined by SDS-urea PAGE. The lyophilized material revealed a unique band of protein that was not seen in control samples prepared in identical fashion. This protein could be consistently fractionated on a calibrated G-100 Sephadex column with its peak fraction...
HPLC of cerebrovascular amyloid fibril protein β from a patient with Alzheimer's disease, previously isolated on Sephadex G-100, reveals two major protein peaks (β_1 and β_2), each of similar amino acid composition and identical N-terminal amino acid sequence (Table 2).

Two other cases of Alzheimer's disease gave identical HPLC profiles.

The vast majority of amyloid fibrils in the systemic diseases are created from a serum protein precursor by proteolysis, probably by the lysosomal complement of phagocytes (4). The finding of proteins fractionated into two peaks by HPLC suggests that one may represent a proteolytic cleavage product of the other. The proteins obtained from these two peak fractions were submitted to automated amino acid sequencing to residue 24 (Table 2). The partial sequences of the two peaks were identical. A computer search of this sequence reveals no homology with any protein sequenced thus far including a human gamma trace serum protein found to constitute the fibrils of a familial Icelandic cerebrovascular amyloidosis (8). This protein, therefore, appears to be a biologic marker for the cerebrovascular amyloid fibril component of Alzheimer's disease.
TABLE 1. Amino Acid Analyses of Chromatographic Fractions

<table>
<thead>
<tr>
<th>AMINO ACID</th>
<th>Nanomolar Percent</th>
<th>No. of Residues</th>
<th>G-100 HPLC</th>
<th>β1 Peptide</th>
<th>β2 Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>β1</td>
<td>β2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>11.47</td>
<td>11.07</td>
<td>11.11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Thr</td>
<td>3.15</td>
<td>1.59</td>
<td>1.36</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ser</td>
<td>5.60</td>
<td>6.35</td>
<td>5.38</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Glu</td>
<td>11.40</td>
<td>12.26</td>
<td>11.16</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Pro</td>
<td>T*</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gly</td>
<td>13.65</td>
<td>16.71</td>
<td>15.23</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ala</td>
<td>8.27</td>
<td>8.08</td>
<td>7.91</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>½ Cys</td>
<td>0.94</td>
<td>T</td>
<td>T</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Val</td>
<td>9.47</td>
<td>8.69</td>
<td>11.74</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Met</td>
<td>2.92</td>
<td>2.06</td>
<td>2.48</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ile</td>
<td>4.29</td>
<td>3.58</td>
<td>3.90</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leu</td>
<td>7.34</td>
<td>6.68</td>
<td>6.30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tyr</td>
<td>2.71</td>
<td>1.89</td>
<td>2.07</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phe</td>
<td>5.76</td>
<td>6.13</td>
<td>6.95</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>His</td>
<td>4.64</td>
<td>5.44</td>
<td>5.94</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>5.01</td>
<td>6.46</td>
<td>5.44</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Arg</td>
<td>3.30</td>
<td>2.97</td>
<td>2.89</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Try</td>
<td>ND**</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>99.92</td>
<td>99.96</td>
<td>99.86</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

* Trace; **Tryptophan not determined.

The significance of this finding is that when monoclonal antibodies are raised to the amyloid fibril protein reported here, these should detect an antigenically related protein in Alzheimer's disease patients' sera. If the

Table 2. Sequence of Cerebrovascular Amyloid Protein

\[\text{NH}_2\text{-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Gln-Val-} \\
\text{His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-}\ldots\text{COOH} \]
serum protein is also unique to this condition, a diagnostic serum (e.g. radioimmunoassay) test for Alzheimer's disease can be devised. This study is in progress. If adult Down's syndrome individuals also are found to have this cerebrovascular amyloid protein (10), they will represent the first predictable model for the study of the pathogenesis of Alzheimer's disease.

ACKNOWLEDGEMENTS

We wish to express our appreciation to Ms. Karen Rasmussen for technical assistance, to Mr. Fred Hill of the UCSD Weingart Protein Sequence Facility for the amino acid sequence determinations, to Dr. Jack Kyte for the use of the automatic amino acid analyzer and HPLC system and to Dr. Russell Doolittle for the computerized search for amino acid sequence homologies. This study was supported by a grant from the Weingart Foundation and a donation from the National Alzheimer's Disease and Related Disorders Associations, Inc.

REFERENCES