TFs, TF binding sites (TFBSs), target genes, promoters and TFs, et al.
TRANSFAC (Matys, 2006), for example, contains data on genes, transcription factors (TFs) (Cochrane and Galperin, 2010), and transcriptional regulatory elements in general or from niche areas of gene regulation have been developed; see the Nucleic Acids Research list of databases on transcriptional regulator sites and transcription factors (TFs) (Cochrane and Galperin, 2010). TRANSFAC (Matys et al., 2006), for example, contains data on TFs, TF binding sites (TFBSs), target genes, promoters and TF classification in several model eukaryotic organisms; while FlyBase (Gumblin and Strelets, 2006) and Arabidopsis gene regulatory information server (AGIRIS; Davuluri et al., 2003) are species-centered resources. Resources providing curated information, such as ORegAnno (Griffith et al., 2008) and Transcription Regulatory Regions Database (TRRD; Kolchanov et al., 2002), co-exist with resources that provide computationally derived data, such as TrsDB (Hermoso et al., 2004) and DBD (Kummerfeld and Teichmann, 2006). In addition, there are general biological resources that contain among other information data related to transcriptional regulation. For example, PDB (Berman et al., 2000) and NDB (Berman et al., 2002) contain structures of TFs and their complexes with DNA; Pfam (Finn et al., 2008) and PROSITE (Hulo et al., 2006) contain sequence patterns of TFs. Currently, information concerning transcriptional regulation is dispersed among various resources, many of which are not organized into databases but separate files posted on the web. To fully use and navigate these data, integrated systems are required.

The first data integration systems in molecular biology emerged to bring together internal databases and analysis tools in order to extract novel biological knowledge; examples include GeneExpress (Kolchanov et al., 1999), which is specific to the domain of gene transcriptional regulation, and FlyBase (Drysdale, 2008), which is species-specific. Early systems integrated external databases predominantly by means of URL links. Well-known link-based integrating systems, aka portals or navigators, include Entrez (Sayers et al., 2009), Ensembl (Hubbard et al., 2009), ISYS (Siepel et al., 2001), the Biology Workbench (Subramanian, 1998), SRS (Etzold et al., 1993), Integr8 (Pruess et al., 2005), Galaxy (Giardine et al., 2005) and BioMart (Haidar et al., 2009). Such systems serve for index information, allow querying and maintain relationships among the entities from various databases.

With the development of biological ontologies, automatic integration of heterogeneous data sources into data warehouses became feasible. Data warehouses can be separated into two groups. The first group comprises systems that cover particular domains of biological knowledge including cPath (Cerami et al., 2006) and PathSys (Baitaluk et al., 2006a, b), which concern biological pathways; ODEX (Kohler et al., 2006), which stores data from gene expression microarray experiments; Ensembl Regulatory Build (Hubbard et al., 2009), comprising annotations of potential regulatory regions within the human genome; ChlamyCyc (May et al., 2009), which stores data on Chlamydomonas reinhardii; SNPexus (Chelala et al., 2009), comprising functional annotations of SNPs in public databases; and RefDIC (Hijikata et al., 2007), containing cross-reference information from the transcriptome and proteome of immune cells. The second group comprises systems that aim to address general problems of integration of heterogeneous biological data and include Atlas (Shah et al., 2005), BioExtract (www.bioextract.org), Biochemical Network Database (BNDB; Kunteev et al., 2007), BIOZON (Birkland and Yona, 2006), GUS (Davidson et al., 2001) and InterMine (www.intermine.org).

1 INTRODUCTION

A large number of databases and datasets that annotate transcriptional regulatory elements in general or from niche areas of gene regulation have been developed; see the Nucleic Acids Research list of databases on transcriptional regulator sites and transcription factors (TFs) (Cochrane and Galperin, 2010). TRANSFAC (Matys et al., 2006), for example, contains data on TFs, TF binding sites (TFBSs), target genes, promoters and TF classification in several model eukaryotic organisms; while FlyBase (Gumblin and Strelets, 2006) and Arabidopsis gene regulatory information server (AGIRIS; Davuluri et al., 2003) are species-centered resources. Resources providing curated information, such as ORegAnno (Griffith et al., 2008) and Transcription Regulatory Regions Database (TRRD; Kolchanov et al., 2002), co-exist with resources that provide computationally derived data, such as TrsDB (Hermoso et al., 2004) and DBD (Kummerfeld and Teichmann, 2006). In addition, there are general biological resources that contain among other information data related to transcriptional regulation. For example, PDB (Berman et al., 2000) and NDB (Berman et al., 2002) contain structures of TFs and their complexes with DNA; Pfam (Finn et al., 2008) and PROSITE (Hulo et al., 2006) contain sequence patterns of TFs. Currently, information concerning transcriptional regulation is dispersed among various resources, many of which are not organized into databases but separate files posted on the web. To fully use and navigate these data, integrated systems are required. The first data integration systems in molecular biology emerged to bring together internal databases and analysis tools in order to extract novel biological knowledge; examples include GeneExpress (Kolchanov et al., 1999), which is specific to the domain of gene transcriptional regulation, and FlyBase (Drysdale, 2008), which is species-specific. Early systems integrated external databases predominantly by means of URL links. Well-known link-based integrating systems, aka portals or navigators, include Entrez (Sayers et al., 2009), Ensembl (Hubbard et al., 2009), ISYS (Siepel et al., 2001), the Biology Workbench (Subramanian, 1998), SRS (Etzold et al., 1993), Integr8 (Pruess et al., 2005), Galaxy (Giardine et al., 2005) and BioMart (Haidar et al., 2009). Such systems serve for index information, allow querying and maintain relationships among the entities from various databases.

With the development of biological ontologies, automatic integration of heterogeneous data sources into data warehouses became feasible. Data warehouses can be separated into two groups. The first group comprises systems that cover particular domains of biological knowledge including cPath (Cerami et al., 2006) and PathSys (Baitaluk et al., 2006a, b), which concern biological pathways; ODEX (Kohler et al., 2006), which stores data from gene expression microarray experiments; Ensembl Regulatory Build (Hubbard et al., 2009), comprising annotations of potential regulatory regions within the human genome; ChlamyCyc (May et al., 2009), which stores data on Chlamydomonas reinhardii; SNPexus (Chelala et al., 2009), comprising functional annotations of SNPs in public databases; and RefDIC (Hijikata et al., 2007), containing cross-reference information from the transcriptome and proteome of immune cells. The second group comprises systems that aim to address general problems of integration of heterogeneous biological data and include Atlas (Shah et al., 2005), BioExtract (www.bioextract.org), Biochemical Network Database (BNDB; Kunteev et al., 2007), BIOZON (Birkland and Yona, 2006), GUS (Davidson et al., 2001) and InterMine (www.intermine.org).
Data integrity, consistency, redundancy, connectivity, updatability, expandability and complex and ‘fuzzy’ queries are the problems associated with data integration (Birkland and Yona, 2006), which arise from the nature of heterogeneous data and the lack of unified ontology. Therefore, there is a need for integration systems that are able to recognize different ontologies and semantics of the data. In addition, since different databases have various update cycles that can lead to format changes and the discontinuance or addition of data, the integration systems need to automatically and regularly scan databases for updates, recognize format changes and update mapping and data exchange procedures in order to maintain consistency of data. Yet the integration systems should also provide an environment that allows users to integrate their own data and customize the system. An ‘ideal’ integration system should provide ad hoc queries that are broad enough and, at the same time, domain-specific and user-friendly.

This study addresses the aforementioned problems of integrating heterogeneous data in the domain of transcriptional regulation. There are systems that integrate various data concerning transcriptional regulation such as, BDDB (Kunze et al., 2007) and SNPnexus (Chelala et al., 2009), which include data from TRANSFAC and CorenRegNet (Baumbach, 2007). However, there is no system that integrates the full spectra of data concerning transcriptional regulation, together with other relevant biological information, which is currently available in upwards of 60 databases listed in the Nucleic Acids Research repository (Cochrane and Galperin, 2010) under the category ‘transcriptional regulator sites and TFs’.

The two major projects in the domain, Ensembl Regulatory Build (Hubbard et al., 2009) and ORegAnno (Griffith et al., 2008), do not represent data warehouses per se, and their aims are distinct from data integration. Ensembl Regulatory Build (Hubbard et al., 2009) provides raw data concerning maps of open chromatin created by DNase I hypersensitivity mapping, covalent modifications of histone protein tails assayed by chromatin immunoprecipitation and annotations of potential regulatory regions within the human genome based on these data, obtained from the ENCODE project (Birney et al., 2007). ORegAnno (Griffith et al., 2008) is an open-source open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, TFBSs and regulatory variants; it is integrated with Ensembl, PubMed and dbSNP via curated cross references.

The present study proposes an approach for integrating all publicly available genomic, transcriptomic, genetic and functional data relevant to transcriptional regulation in eukaryotes and prokaryotes. The resulting integration system, IntegromeDB, has been implemented and is available within the BiologicalNetworks integrated research environment at http://www.BiologicalNetworks.org (Baitaluk et al., 2006b). Information relating to integrated data can be searched by category and data source, and includes quick searches of genes/proteins, data statistics and data inconsistencies in public data sources (http://www.integromedb.org). Data integration and mapping to the internal database is fully automated and based on Semantic Web technologies such as the Resource Description Framework (RDF; http://www.w3.org/RDF/) and Web Ontology Language (OWL; http://www.w3.org/TR/owl-ref/). The IntegromeDB ontology developed by the authors is presented here, together with the system architecture. The current version of IntegromeDB integrates in excess of 100000 different data types and features from more than 100 data sources concerning sequences and structures of TFs, their orthologs and binding sites, promoters and other gene regulatory regions, orthologs of target genes, disease relationships, mutations and SNPs, gene expression data, gene function, pathways, protein–protein interactions and other related information. IntegromeDB enables researchers to integrate their own data into the system and query them together with data extracted from other resources.

2 SYSTEM OVERVIEW

The architecture of the IntegromeDB system is presented in Figure 1. The data integration pipeline contains the following main blocks (Fig. 1A):

1. Web crawler that automatically searches a list of web sites for data to be integrated.
2. Data Integration Server that does the following: (i) accepts external data from the web crawler and stores them in the temporary database TempDB; (ii) maps external data to the IntegromeDB database schema, using the IntegromeDB Ontology (Fig. 1B); and (iii) injects data from external tables into the database (Fig. 1C).
3. The internal database (also called IntegromeDB in Fig. 1A) stores the integrated data according to the IntegromeDB Ontology.

2.1 Data integration and mapping

The data integration and mapping procedure is fully automated and does not require human intervention at any step, including data collection by traversing external web sites and mapping external data to the internal database schema.

To traverse web sites of interest, the SmartCrawler web crawler is utilized (http://sourceforge.net/projects/smartcrawler/) to crawl the links to a depth of 12. The 12-deep crawl provides a sufficiently broad coverage and retrieves web pages that predominantly contain information relevant to transcriptional regulation. Web crawler searches for web pages, tables and relational databases that can be accessed in any of the following ways: (i) directly by querying an SQL database; (ii) through a HTTP GET operation executed against a database; and (iii) invoking a web service provided by the database. The data source to be integrated is assumed to be either a relational (tab-delimited, Excel, SQL), XML or RDF file with a binding pattern for every relationship disclosed.

The web crawler stores external data in the temporary database TempDB (Fig. 1A) before they are mapped to the IntegromeDB database schema, using IntegromeDB Ontology, and are finally transferred into the database by DataIntegrator.

To map the data, the following four kinds of mapping relations are considered:

- ‘OntologyClass’ mapping, which describes the type of objects to be integrated. It maps data values from an external source to an ontological term in IntegromeDB.
- ‘Attributes_for’ mapping, which specifies the attributes for classes that must be integrated. It is a joinable relation that links attributes to integrated objects that are mapped through ontology to an internal OntologyClass.
Semantic integration of data on transcriptional regulation

Fig. 1. The architecture of IntegromeDB. (A) Data integration pipeline, containing the main architectural blocks. (B) Data mapper, administered internally and allowing mapping external data to internal database schema through ontologies. (C) Data integrator logic schema, shown on the example of three different data types, regulatory elements (e.g. TATA box), genes (e.g. IL1 gene) and microarray experiments, that share the common ObjectID (e.g. GeneID) and are joined through PK–FK relationships depicted in the ontology (D) into a single integrated table.

- ‘MetaNode_for’ mapping applies to meta-graphs, such as pathways and organisms, and describes which OntologyClass is a meta-graph of another OntologyClass, for example, a protein being part of a particular pathway.
- ‘Relations_between’ mapping applies to the relationships between objects, such as interactions, co-expression and co-occurrence, and provides OntologyClasses between which the relationship is integrated.

Data Mapper maps external biological data to the IntegromeDB internal RDF-compatible (RDF; http://www.w3.org/RDF/) database schema, transforming biological data into an RDF-compatible format. To transform biological data into an RDF-compatible format and create integrated views of data sources, the data integration procedure includes automatic determination of Node IDs (primary, graph and connector nodes) such as names and synonyms of biological entities. Several algorithms have been implemented to support relevant data ingestion using ‘ontology to data’ mapping, primary key–foreign key (PK–FK) constraints, and ontological data joins that are based on concept IDs rather than actual data. Figure 1C illustrates how integrated data that are mapped to two different ontological concepts, such as ‘TATA box’ and ‘Gene Expression’, can be linked through the PK–FK constraint at the source. Local views can be joined on the basis of ObjectIDs extracted from the ontological source.

In the absence of clear evidence of reference to a class from the ontology, an automatic procedure that statistically evaluates the content of the integrated table and assigns a term from the IntegromeDB ontology to it is applied. For each distinct word and word combination that is present in the table to be integrated, which are terms in the IntegromeDB ontology, the statistical significance of the term’s occurrence (P-value) is calculated using Fisher’s exact test. The most significant term is assigned to the table.

2.2 Database schema
The IntegromeDB internal database schema is RDF-compatible (RDF; http://www.w3.org/RDF/), i.e. it stores biological data in an RDF-compatible format, the standard format of the Semantic Web (Good and Wilkinson, 2006). The database architecture and
database schema are provided at http://www.BiologicalNetworks.net/Database/tut00.php.

IntegromeDB’s internal database is a PostgreSQL database that has been modeled as a node- and edge-typed labeled meta-graph (Hu et al., 2007), where the labels are described by their own schema. The data model has been introduced and described in detail (Baitaluk et al., 2006a, b); therefore, a brief description is provided herein. Objects such as proteins, ligands, molecular complexes and genes, are represented by nodes; the relationships between objects such as up/down-regulation, molecular transport, molecular synthesis and enzymatic activity are represented by edges. The types of nodes and edges are specified in the label of the node. An edge ‘regulation’ between a protein and a gene could be labeled by the nature of regulation such as activation and the mechanism of regulation, for example, phosphorylation.

To represent a wide variety of biological data, the IntegromeDB internal database employs a graph-based model that dynamically incorporates (Fig. 1C) new sets of nodes, edges or node/edge labels into the database, and integrates the following four orthogonal data types (Fig. 2B):

(a) Graphs that represent molecular interactions and ontologies; for example, the protein–protein interaction network of NFκB-1 factor with other four proteins, denoted ObjectID 6, 7, 8 and 9 (Fig. 2B). Relations between them could be as follows: 144, 145, 146 and 147.

(b) Histograms that represent time–value structures including gene expression data and metabolite concentrations; for example, microarray expression data obtained in an experiment with ID 18 (structured value in Fig. 2B) can be associated with the genes with ObjectID 5, 6 and 7, coding for NFκB-1 and its interacting proteins.

(c) Trees that represent classifications/ontologies and phylogenies.

(d) Sequences that represent protein/DNA/RNA sequences and protein structures; for example, in Figure 2B the object NFκB-1 protein (ObjectID 5) has such attributes as the name of the object (NFκB-1, ID 15), gene coding sequence (ID 10), DNA-binding motif (ID 22), and a secondary structure of the DNA-binding domain (ID 98).

The internal database of IntegromeDB internal database contains specialized indexes that allow quick access to ancestor/descendant relationships for transitive relationships, such as ‘subclass-of’ and ‘part-of’. To support ontological queries, IntegromeDB contains a specialized query processing engine described further.

2.3 Ontology model

Databases use different ontologies and some do not use standard ontologies. Therefore, to integrate heterogeneous resources, an ‘integrated’ ontology, IntegromeDB Ontology, which is available as an OWL file at www.integromedb.org has been developed. IntegromeDB Ontology (Fig. 2A) was developed by manual selection of 34 ontologies that reflect current knowledge of transcriptional regulation, from approximately 100 ontologies provided by the OBO consortium (www.bioontology.org). The selected ontologies include Sequence Ontology, GeneOntology, BioPAX, Disease Ontology, Chemical Ontology, the Functional Genomics Ontology, Phenotype and Trait Ontology and various others provided by the OBO consortium (www.bioontology.org). The selected ontologies were mapped to the BioNets ontology (Baitaluk et al., 2006a) in order to accommodate terms and inter-term relationships relevant to transcriptional regulation. The resulting IntegromeDB Ontology complies with the formal OWL, the World Wide Web Consortium standard (http://www.w3.org/TR/owl-ref/). IntegromeDB Ontology is a graph structure that is automatically generated by Protégé.
The search engine layer transforms the user query into actual search
κ
and has transmembrane regions. This description logic definition
site, yet NF
κ
interface supports structured advanced queries to allow querying of
BiologicalNetworks application, which can be downloaded at
http://www.integromedb.org/tut0.php.

or 'obesity OR diabetes'. Examples of queries are available at
such as 'obesity AND/OR diabetes', 'obesity AND diabetes'
provides the following querying possibilities: (i) simple keyword/ID
be inspected without loading the BiologicalNetworks application. It
modified version of Google PageRank algorithm (Page
2.4 Data query
The search engine layer transforms the user query into actual search
instructions and contains the following components:

(a) Query processor, which manipulates the user's keyword
queries into an internal form (query processor structure and
internal query language will be published elsewhere);
(b) Index manager, which uses the Apache Lucene indexing
engine to create direct and inverted indexes of all integrated
data sources and contains the methods required to create,
update and access the indexes.

When the query results are ready, the module developed by the
authors, called the BioWEB ranker, calculates the ‘importance’
of every returned object or ontology class. The ‘importance’ is
measured as a weighted number of links an object or ontology class
to other objects and ontology classes. BioWEB implements the
modified version of Google PageRank algorithm (Page et al., 1999)
to sort results in terms of the ‘importance’ score.

The web page www.integromedb.org allows integrated data to
be inspected without loading the BiologicalNetworks application. It
provides the following querying possibilities: (i) simple keyword/ID
search; (ii) wildcard search; (iii) multiple word structured search,
such as ‘obesity AND/OR diabetes’, ‘obesity AND diabetes’
or ‘obesity OR diabetes’. Examples of queries are available at
http://www.integromedb.org/tut0.php.

More extensive querying functionality is available in the
BiologicalNetworks application, which can be downloaded at
http://www.BiologicalNetworks.org. The specially designed query
interface supports structured advanced queries to allow querying of
any logical combination of bioentities, bioprocesses/relations and
their properties. For example, the context query:

\[(\text{geneID in (like(NuclSequence, ANY)}) \land \text{gene.geneID, gene.enancher})\] retrieves the set of objects (genes) that have attributes containing
the specified query phrase ‘sequences of enhancers’.

Other examples of context queries and queries by attributes
and databases/datasets, can be found in Supplementary Material 1.
The examples of queries provided are internal queries generated
in response to queries constructed using the tool in the
BiologicalNetworks application called ‘Comprehensive search by
attributes’ (it is located in the upper right corner of the program
and depicted by a binocular; see Fig. 4).

Searching by sequence is under development. Section 3 ‘Integration of sequences with meta-graph data’ presents the
proposed approach to the problem of querying the database by
sequence.

2.5 Data provenance, reconciliation and consistency
Data are integrated into the system having been automatically
collected from databases listed in the NAR repository (Cochrane
and Galperin, 2010), using web crawling technologies. The full
list of databases that have been integrated so far is provided at

Data from databases that have been already integrated in the
system are updated monthly. In addition, the web crawlers are
continuously searching for and adding data from databases that
have not yet been integrated into the system. Web crawlers are
guided by the NAR Database repository (Cochrane and Galperin,
2010), which currently lists more than 1200 databases; 102 of which
have been integrated in IntegromDB on 02/10/2010, including
all databases in the category ‘transcriptional regulator sites and
TFs’. Mass integration of databases from other categories is a
subject of data storage availability (the current size of IntegromDB
exceeds 5TB). Current statistics concerning integrated data by
category are provided at www.integromedb.org. Also, statistics
calculated by contribution of integrated data sources can be found at

To address the problem of data cleaning and conflict
resolution, reconciliation procedures that identify controversies or
inconsistencies in data have been developed. Examples of data
inconsistencies include, but are not limited to, the following:
(i) two different genes being assigned to the same synonym;
(ii) two genes with the same name pointing to different
chromosomal locations; (iii) two genes with different names
pointing to the same chromosomal location; and (iv) different
objects having names with a common string; for example,
These inconsistencies should be resolved by a curator, but
owing to limited human resources and fully automated data
integration, human intervention does not occur; details on retrieved
properties by data sources can be viewed for each gene/protein
by clicking ‘Details by Data Sources’ on the query result page at

To evaluate the quality of integrated data, inconsistencies in the
databases that were integrated in IntegromDB were estimated.
Since calculation of all inconsistencies among gene/protein IDs
only, including their synonyms, would require more than 10^{13}

1655
Fig. 3. Integration of genomic sequences with meta-graph data. (A) Integrated tables and visualization of the final integrated product on the sequence of IL-1 gene (see Fig. 2). (B) Connection of MetaGraph part of the database (from Fig. 2B) to Sequence part of the database. (C) Five sample intervals (regulatory regions) from the IL-1 upstream region for construction of an example RI-tree. Virtual backbone of the RI-tree and registration positions are depicted. (D) Relational indexes lowerIndex and upperIndex. (E) Query preparation step for the query interval (11, 13) (shaded in gray): leftQueries (8, 10), rightQueries (14, 16) and innerQueries (11, 13). The color figure was generated in BiologicalNetworks.

all-against-all comparisons, the number of inconsistencies was estimated. Four databases, namely GeneCards, String, BIND and Uniprobe, which are the largest contributors of mammalian gene/protein IDs being integrated, were selected. All genes/proteins from the 10 largest genomes were selected from these databases, and for each gene/protein from the final dataset, comprising ~400 000 IDs, bidirectional occurrences of names and synonyms in the databases were calculated. Inconsistencies were found in ~3% of genes/proteins (~12 000) and are documented at http://www.integromedb.org. This level of inconsistency nearly corresponds to that expected from manually curated data; users should expect ~3% of retrieved data to be inconsistent when querying IntegromeDB.

3 INTEGRATION OF SEQUENCES WITH META-GRAPH DATA

Data represented by graphs, histograms and trees—interaction networks, 3D structures of node proteins, expression values of mRNA products and molecular interaction types—can be integrated into the labeled meta-graph database in a straightforward manner (Fig. 2B; see also Fig. 2 in Baitaluk et al., 2006b). However, integrating meta-graph data and sequence data requires superimposing meta-data on genomic sequence elements to create multiple annotations for the genomic sequences. This is not a trivial task owing to the orthogonal nature of integrated data that are represented by sequences, graphs and time/value dependencies.

Herein is a description of an approach to the problem of integrating sequences with meta-graph data. Specifically, Relational Interval (RI)-tree structures that are used for navigation through sequences, including scroll upstream/downstream, get_next gene/operon/chromosome, and annotation of multiple overlapping sequences are described. However, a description of the suffix tree structures used for sequence searches is beyond the scope of this article. It should be noted that features described in this section are currently implemented at the database level and are available as binaries upon request; their implementation at the level of the user interface will be described elsewhere.

Sequences (genomic/protein) are integrated with meta-graph data using an ElementId-ObjectID connection table (Fig. 3A). Where elements are sequence elements, for example, a core promoter, TATA box or binding site, they are attributed to a particular gene by means of known localization in the gene, according to the GeneBank global position. Internal enumerations in integrated databases such as TRANSFAC provides localization of a regulatory region in respect to the transcription start and are recalculated.
All heterogeneous data, which are integrated in the meta-graph database, appear to be mapped on genomic intervals and vice versa. As a result, DNA sequences, molecular interaction graphs, 3D protein structures, images of expression, and other meta-data become annotated within the same context.

Figure 3 demonstrates how five sample intervals on the sequence of the IL-1 gene are represented by an RI-tree and how navigation queries are processed for such a tree. Let us consider five intervals: C1(1, 5), C2(2, 9), C3(8, 17), C4(14, 19) and C5(21, 26) (Fig. 3A and B). The virtual backbone with root value 16 covers the data space from 1 to 31 nt (Fig. 3C). The five intervals are registered at the nodes 4, 8, 16 and 24, respectively. The interval (1, 5) is represented by the entries 4, 1 and C1 in the lowerIndex and by 4, 5 and C1 in the upperIndex, as 4 is the registration node and 1 and 5 are the start and end points of the interval, respectively (Fig. 3D).

To process an interval intersection query (start, end) based on the RI-tree, two phases are distinguished, the query preparation phase and the declarative query processing phase. The first phase descends the virtual backbone from the root node down to the start and the end, respectively (Fig. 3E). The traversal is performed arithmetically, and the visited nodes are collected in two different main-memory tables, leftQueries and rightQueries, both obeying the unary relational schema (node). Nodes to the left of the start could contain intervals that overlap the start and are inserted into leftQueries. Nodes to the right of the end could contain intervals that overlap the end and are inserted into rightQueries. Where these nodes are taken from the paths, the set of all nodes between the start and the end belong to the innerQuery, which is represented by a single range query on the node values. All intervals registered at the nodes from the innerQuery are guaranteed to intersect the query and will, therefore, be reported without further comparison. The query preparation phase is performed entirely in the main memory with no I/O operations.

In the second phase, transient tables are joined with relational indexes upperIndex and lowerIndex, as follows:

```sql
SELECT id FROM upperIndex AS i
JOIN :leftQueries USING (node)
WHERE i.end >= :start
UNION ALL
SELECT id FROM lowerIndex AS i
JOIN :rightQueries USING (node)
WHERE i.start <= :end
UNION ALL
SELECT id FROM lowerIndex // or upperIndex
WHERE node BETWEEN :start AND :end
```

The end point of each interval registered at the nodes in leftQueries is compared with the start, and the start point of each interval in rightQueries is compared with the end. The innerQuery corresponds to a simple range scan over the intervals with the nodes in the interval between the start and the end.

4 DATA ACCESS AND SYSTEM EVALUATION

This section describes how data in IntegromeDB can be accessed and provides several examples of application of the system. IntegromeDB is accessible through the BiologicalNetworks application, which can be downloaded at http://www.BiologicalNetworks.org. The web page www.integromedb.org has been developed to allow the user a quick inspection of integrated data for specific genes/proteins without loading the BiologicalNetworks application.

4.1 Querying IntegromeDB web page

The web page www.integromedb.org provides keyword/3D, wildcard and multiple word search capabilities, statistics on integrated data by category and database, information relating to retrieved properties by data sources for each gene/protein that can be accessed from the query result page, and data inconsistencies in public data. The web site was designed primarily for the purpose of giving the user an opportunity to look at integrated data rather than to provide complex data analysis capabilities, which are implemented in the BiologicalNetworks application.

The remainder of this section, explores the IntegromeDB web site search capabilities using two example queries: ‘relb AND diabetes AND Alzheimer’ and ‘rela AND diabetes AND Alzheimer’. RelA (p65) and RelB TFs belong to the family of NFkB factors; they can form heterodimers with other NFkB factors, p50 (NFkB-1), p52 (NFkB-2), c-Rel, and with each other, and RelA can form homodimers. RelA is activated in the classical/canonical NFkB activation pathway that is stimulated by pro-inflammatory cytokines, such as TNF-α and IL-1, and pathogen-associated molecular patterns (Hoffmann et al., 2006). In addition, RelB is released in the alternative/non-canonical pathway that is activated by other cytokines. The canonical and non-canonical pathways have distinct regulatory functions: the canonical pathway is involved in innate immunity and cell survival; the non-canonical pathway is important in adaptive immunity, lymphoid organ development and B-cell maturation (Bonizzi and Karin, 2004). However, inflammatory processes involving both the canonical and non-canonical NFkB activation pathways directly underlie insulin resistance in peripheral tissues and astrocytes in the brain and play an essential role in the etiology of Alzheimer’s disease and diabetes mellitus (Granic et al., 2009).

The first query, ‘relb AND diabetes AND Alzheimer’, returns four genes: Tnf, ESR1, CD40 and AhR. In comparison, EIB-eye search (http://www.ebi.ac.uk; Jones et al., 2008) for the same query returns no-entries from any database and Entrez (Sayers et al., 2009) returns three genes: Tnf, ESR1 and CD40. Aryl hydrocarbon receptor (AhR) protein, which was returned by IntegromeDB but not by Entrez, interacts with RelB, and AhR:RelB dimers regulate transcription of many genes, functioning as coordinators of inflammatory responses (Vogel et al., 2007; Vogel and Matsumura, 2009). Therefore, AhR relates to RelB, diabetes and Alzheimer’s disease. One reason that Entrez did not return the AhR gene is that it searches keywords, publications and gene properties; while IntegromeDB searches relations between publications to the database objects (genes) associated with query words.

The second query, ‘rela AND diabetes AND Alzheimer’, returns six genes: Tnf, K60 (IL-8), PTGS2, BAX, STMY3 and Mlana. Entrez returns nine genes: PTGS2, Tnf (mouse), IL8, TNF, TP53, SIRT1, PRKCD, ESR1 and PRKACA. The query results of Entrez and IntegromeDB only have three common genes, but this can be explained by the fact that Entrez is more up to date. However,
IntegromeDB returned three genes that were not found in Entrez: BAX, STMY3, and Mlana. Therefore, we investigated these three genes, searching the query result pages for the query words.

BAX (Bcl2-associated protein X) gene expression is regulated by NFkB factors, specifically RelA (Grimm et al., 2005). It was demonstrated that patients with diabetes (Varo et al., 2003) and those with Alzheimer’s disease (Ait-ghezala et al., 2008) have a pro-inflammatory state indicated by elevated levels of plasma sCD40L. In addition, BAX mRNA levels are altered in peripheral blood mononuclear cells from individuals with mild cognitive impairment and Alzheimer’s patients (Gatta et al., 2009).

STMY3 (Stromelysin-3 precursor) gene expression is associated with the expression of p53 in various cancers (Sharma et al., 2004). Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, were reported in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease (Cenini et al., 2008). In addition, polymorphisms in p53 are known to be associated with diabetes (Szoke et al., 2009).

Mlana (Melan-A protein, MART-1) stimulates T-cells to increase secretion of TNF-α (Elluru et al., 2008), which is a direct target of RelA (Shakhov et al., 1990). Expression of TNF-α increases in both diabetes (Gordin et al., 2008) and Alzheimer’s disease (Baranowska-Bik et al., 2008).

Therefore, the three genes considered are directly or indirectly associated with RelA, Alzheimer’s disease and diabetes.

The fact that IntegromeDB found these genes, while Entrez did not supports the aforementioned statement that IntegromeDB approaches integration of data and searches differently from Entrez. In particular, IntegromeDB integrates data objects (genes) and performs searches by object properties rather than searching keywords in publications. The examples considered clearly demonstrate the power of the proposed approach: novel knowledge concerning gene-disease associations was obtained using IntegromeDB in a matter of minutes, and no other system could reveal those associations.

4.2 BiologicalNetworks application

BiologicalNetworks serves as an environment for navigating, visualizing and analyzing integrated data. Within the application, the user can search pathways [Fig. 4(1)], microarray experiments [Fig. 4(2)] and data on transcriptional regulation [Fig. 4(3)]. Figure 4 demonstrates how these three types of search can be integrated and visualized: first, select the Toll-like receptor signaling pathway that contains NFkB1 and IL-1 genes [Fig. 4(1)]; second, select a microarray experiment that involved NFkB1, IL-1 and MAPK1 genes, and color the genes on the pathway according to their color on the microarray image [this was done using the tool on the top panel of the window that displays the microarray image, Fig. 4(2)]; third, select the NFkB1 gene on the pathway and explore the properties of this gene/protein that have been collected from all integrated data sources.
Altogether, we selected 18 attribute types, applied to them the
12b are co-expressed. Type in the search window for microarray
data, and highlighted below is one such method.

The rest of this section explains how to use BiologicalNetworks
to find murine genes that are common targets of c-Rel and RelA TFs
and contain experimentally identified binding sites. In addition, the
types of cells expressing the genes, the signals to which the genes
respond and co-expression of the genes can be identified. There are
many ways to use the application in order to find the aforementioned
data, and highlighted below is one such method.

First, the TFs of interest must be identified. In the top right corner
of the application select ‘Mus Musculus’ using a look-up menu on
the left of the search window, type ‘rela, c-rel’ (comma means
‘OR’, ‘c-Rel OR RelA’) in the search window and click ‘Search’. The
search results are shown in the middle bottom ‘Search Result
Window’, populating the IntegromeDB folder.

Second, target genes must be identified. In the result search
window, select the proteins with the names Rela and Rel (c-Rel)
(use Ctrl+left mouse to make the selection) and using the right
mouse button select ‘Build Pathway’ in the pop-up window to open
the ‘Build Pathway Wizard’. In the wizard, select the option ‘Find
targets for selected nodes’. The network of nodes appears in the
pathway window. The network can be zoomed and moved using
the mouse. In addition, in this window each node and its attributes
can be explored using the tool for node selection on the above
panel, depicted by an arrow. Select, using the tool, all nodes that are
common for c-Rel and RelA (when selected, the nodes are colored
blue).

Third, identify from the common targets (nodes selected at
the previous step) those with regulatory regions containing
experimentally identified binding sites. When the pathway window
is active, click on the image of the binocular in the right-hand corner
to launch the tool ‘Search by attribute value’. In the tool, expand
(do not select) ‘entity’, then ‘organism’, then ‘physicalEntity’ and
select ‘protein’. The tool will load attribute types for selected entities
time of loading depends on how many attributes the selected entity
has). Attribute types can be sorted by name. Select, by clicking on
the right box depicting the plus sign, the attributes starting with
‘bs’, such as ‘bs_name’ (four attributes), and the attribute ‘sequence of the binding site’. Expand
‘relation’ then ‘interaction’, and select ‘interaction_transcription’
to load attributes for this entity. Select all attributes starting with
‘binding’, such as ‘binding_motif’ and ‘binding_seq_cis_elements’.

Altogether, we selected 18 attribute types, applied to them the
common expression ‘not empty/exist’ and common operator ‘OR’.

Click ‘OK’ in the tool. The search gives the following result:
among nine common targets of c-Rel and RelA, two genes,
recombination activating gene 2 (Rag2) and interleukin 12b (IL-
12b) have information on TFBSs that has been integrated in
IntegromeDB. Rag2 and IL-12b are known NFxB targets (Murphy
et al. 1995; Verkoczy et al., 2005).

Fourth, identify microarray experiments in which Rag2 and IL-
12b are co-expressed. Type in the search window for microarray
experiments [Fig. 4(2)] ‘rag2, il-12b’, select ‘Mus Musculus’ in the
look-up window on the left of the search window, select an option to
search for co-regulated genes only on the right of the search window.
At the time of writing, the search gave 16 GEO profiles to browse
through.

To the best of the authors’ knowledge, there is no system in
the public domain that allows a similar type of search to be
executed; that is, to find TF targets, regulators or interacting
partners associated with specific attributes gathered from more than
a hundred databases. To improve searching and navigation through
all integrated data, a new, scenario-oriented navigation interface in
BiologicalNetworks is currently under development.

5 DISCUSSION

As far as we are aware, no current integration solution addresses
the overlapping nature of integrated data. The majority of existing
solutions achieve horizontal integration; data sources are treated
as complementary to one another, and issues associated with
data aggregation are ignored. The approach proposed here and
implemented in the IntegromeDB system allows an integrated
warehouse of data to be created from various databases and files
in different formats, including web pages.

Unlike traditional warehouses such as Atlas (Shah et al., 2005),
BNDB (Kuntzer et al., 2007) and GUS (Davidson et al., 2001)
that employ star and snowflake models over relational data,
IntegromeDB employs a graph-based model (Baitaluk et al., 2006a)
that has been developed for integrating interaction networks.
The graph-based model allows natural integration of genomic sequences,
which are represented as RI-trees, with graph-structured data such
as gene interaction graphs, ontologies, taxonomies and protein
classifications. The data model means that IntegromeDB is scalable
in respect to the number of integrated data, allowing more resources
to be integrated than other systems such as cPath (Cerami
et al., 2006), ONDEX (Kohler et al., 2006), BIOZON (Birkland and Yona,
2006) and BNDB (Kuntzer et al., 2007) (Table 1).

One of the advantages of the IntegromeDB architecture is that its
generic internal data model allows annotation and the querying
of genomic sequences as well as other meta-data (this feature is not yet
available at the level of the user interface). Four integrations systems,
cPath, ONDEX, BIOZON and BNDB, which are conceptually
similar to IntegromeDB, do not present sequence annotation and
queries by sequence (Table 1). The problem of integrating sequences
with meta-graph data was addressed by implementing sequence
navigation and annotation using RI-tree structures, and sequence
searching using suffix tree structures (Gusfield 1997; Farach-Colton
et al. 2000; Giegerich et al., 2003).

Ontology-driven data integration and mapping strengthen the
proposed approach. Out of the four integration systems that
were compared with IntegromeDB, integration with OBO is only
provided in ONDEX (Table 1). The ontology-driven approach
adopted in the proposed system provides advantages over
traditional databases as it allows data integration processes to
be automated. However, several limitations exist including the
need for human intervention. These limitations predominantly arise
from inconsistencies in ontologies and their periodic changes and
revisions, reflecting the current state of scientific knowledge. This
means that human intervention is unlikely to be eliminated in the
near future.

IntegromeDB can be considered as a mixture of two
approaches, Data Integration in its classical sense and the

Downloaded from http://bioinformatics.oxfordjournals.org/ by guest on July 3, 2014
Semantic Web. The Semantic Web technologies, such as the RDF (http://www.w3.org/RDF/) and the OWL (http://www.w3.org/TR/owl-ref/), have the potential to add a new dimension to data integration in systems biology, which is expected to adopt these technologies (Ruttenberg et al., 2007). However, one major problem with the Semantic Web is the lack of semantic content; the majority of biological information is either not semantically codified or is codified with poor axiomatization (Egahá, 2008). This means that using the ‘pure’ Semantic Web approach is still problematic (Good and Wilkinson, 2006). Several mechanisms to address the problems of semantic codification, such as resolving biological identifiers, have been proposed and include OVKAM IDs (http://www.okkam.org/), MIRIAM URIs (Laibe and Le Novere, 2007), LSIDs (http://lsrn.org), URIs (Laibe and Le Novere, 2007), LSIDs (http://lsrn.org), and include OKKAM IDs (http://www.okkam.org/), MIRIAM and URI schemes (http://bio2rdf.wiki.sourceforge.net/Banff+Manifesto) and shared names (http://neurocommons.org/page/Shared_names). In the IntegromeDB system, biological identifiers are resolved by mapping external identifiers to internal identifiers using IntegromeDB ontology and filtering duplicates; this procedure is maximally automated, obviating the need for significant human intervention.

IntegromeDB is integrated into a research environment and has an open-access web-search interface. Data integrated in IntegromeDB are accessible through the integrated research environment BiologicalNetworks at www.BiologicalNetworks.org and the web-search interface at http://integromedb.org. IntegromeDB will evolve to expand the scope of data and improving the user interface. The IntegromeDB has a general purpose graph architecture and is data-type neutral, and there is the prospect of further data integration of orthogonal sources of information such as chemical and pharmacological data from PharmGKB, microarray data from ArrayExpress, disease data from OMIM, and others. Further development of the user interface will be focused on implementing sequence searches, navigation and annotation, slick representation of integrated data and more intuitive and scenario-focused navigation.

Table 1. Comparison of IntegromeDB with integration systems: cPath (Cerami et al., 2006), ONDEX (Kohler et al., 2006), BIOZON (Birkland and Yona, 2006) and BNDDB (Kunteet al., 2007)

<table>
<thead>
<tr>
<th></th>
<th>cPath</th>
<th>ONDEX</th>
<th>BIOZON</th>
<th>BNDDB</th>
<th>IntegromeDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability to the number of data types</td>
<td>no</td>
<td>yes</td>
<td>+b</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Number of integrated databases</td>
<td>8</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>> 100</td>
</tr>
<tr>
<td>Ad hoc queries</td>
<td>+a</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Integration engine</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Sequence annotation</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Sequence search</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>OBO integration</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Multidimensional data</td>
<td>no</td>
<td>+b</td>
<td>+b</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Web search</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>+d</td>
<td>yes</td>
</tr>
<tr>
<td>Research environment</td>
<td>Cytoscape</td>
<td>Ondex</td>
<td>no</td>
<td>no</td>
<td>BiologicalNetworks</td>
</tr>
<tr>
<td>Open/access easy</td>
<td>yes</td>
<td>+d</td>
<td>yes</td>
<td>+d</td>
<td>yes</td>
</tr>
</tbody>
</table>

1Only 10 object types are presented.
2Gene expression data only.
3Web interface for predefined queries exists, but no interface for ad hoc queries.
4Available only after registration and sign up.
5Multidimensional data is represented by Time/Value, Value/Space, Time/Value/Space, etc.
6dependencies, for example microarray gene expression matrices, protein abundance data, chemical concentration in the cell, etc.

ACKNOWLEDGEMENTS
We thank M. Sedova and A. Gupta for valuable discussions and assistance in creation of IntegromeDB and W. Bluhm for critical reading of the manuscript.

Funding: National Institutes of Health (R01GM084881 to M.B., R01GM085325 to J.P.).

Conflict of Interest: none declared.

REFERENCES

Shklov,A.N. et al. (1990) Structural analysis of the rabbit TNF- receptor, locating the genes encoding TNF-beta (lymphotoxin) and TNF-alpha (tumor necrosis factor). Gene, 90, 215–221.

